Amodified EM algorithm for mixture models based on Bregman divergence

نویسندگان

  • Yu Fujimoto
  • Noboru Murata
چکیده

TheEMalgorithm is a sophisticatedmethod for estimating statistical models with hidden variables based on theKullback–Leibler divergence. A natural extension of the Kullback–Leibler divergence is given by a class of Bregman divergences, which in general enjoy robustness to contamination data in statistical inference. In this paper, a modification of the EM algorithm based on the Bregman divergence is proposed for estimating finite mixture models. The proposed algorithm is geometrically interpreted as a sequence of projections induced from the Bregman divergence. Since a rigorous algorithm includes a nonlinear optimization procedure, two simplification methods for reducing computational difficulty are also discussed from a geometrical viewpoint. Numerical experiments on a toy problem are carried out to confirm appropriateness of the simplifications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penalized Bregman Divergence Estimation via Coordinate Descent

Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...

متن کامل

Incremental Learning of Gaussian Mixture Models

Gaussian Mixture Modeling (GMM) is a parametric method for high dimensional density estimation. Incremental learning of GMM is very important in problems such as clustering of streaming data and robot localization in dynamic environments. Traditional GMM estimation algorithms like EM Clustering tend to be computationally very intensive in these scenarios. We present an incremental GMM estimatio...

متن کامل

Clustering with Beta Divergences

Clustering algorithms start with a fixed divergence, which captures the possibly asymmetric distance between a sample and a centroid. In the mixture model setting, the sample distribution plays the same role. When all attributes have the same topology and dispersion, the data are said to be homogeneous. If the prior knowledge of the distribution is inaccurate or the set of plausible distributio...

متن کامل

Hierarchical 3-D von Mises-Fisher Mixture Model

 In this paper, we propose a complete method for clustering data, which are in the form of unit vectors. The solution consists of a distribution based clustering algorithm with the assumption of a generative model. In the model, the data is generated from a finite statistical mixture model based on the von Mises-Fisher (vMF) distribution. Initially, Bregman soft clustering algorithm is applied...

متن کامل

Monte Carlo Information Geometry: The dually flat case

Exponential families and mixture families are parametric probability models that can be geometrically studied as smooth statistical manifolds with respect to any statistical divergence like the KullbackLeibler (KL) divergence or the Hellinger divergence. When equipping a statistical manifold with the KL divergence, the induced manifold structure is dually flat, and the KL divergence between dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006